Papers
Topics
Authors
Recent
2000 character limit reached

SilhoNet-Fisheye: Adaptation of A ROI Based Object Pose Estimation Network to Monocular Fisheye Images

Published 27 Feb 2020 in cs.CV | (2002.12415v1)

Abstract: There has been much recent interest in deep learning methods for monocular image based object pose estimation. While object pose estimation is an important problem for autonomous robot interaction with the physical world, and the application space for monocular-based methods is expansive, there has been little work on applying these methods with fisheye imaging systems. Also, little exists in the way of annotated fisheye image datasets on which these methods can be developed and tested. The research landscape is even more sparse for object detection methods applied in the underwater domain, fisheye image based or otherwise. In this work, we present a novel framework for adapting a ROI-based 6D object pose estimation method to work on full fisheye images. The method incorporates the gnomic projection of regions of interest from an intermediate spherical image representation to correct for the fisheye distortions. Further, we contribute a fisheye image dataset, called UWHandles, collected in natural underwater environments, with 6D object pose and 2D bounding box annotations.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.