Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Optimal Temperature Region for Solving Mixed Integer Functional DCOPs (2002.12001v2)

Published 27 Feb 2020 in cs.MA and cs.AI

Abstract: Distributed Constraint Optimization Problems (DCOPs) are an important framework for modeling coordinated decision-making problems in multi-agent systems with a set of discrete variables. Later works have extended DCOPs to model problems with a set of continuous variables, named Functional DCOPs (F-DCOPs). In this paper, we combine both of these frameworks into the Mixed Integer Functional DCOP (MIF-DCOP) framework that can deal with problems regardless of their variables' type. We then propose a novel algorithm $-$ Distributed Parallel Simulated Annealing (DPSA), where agents cooperatively learn the optimal parameter configuration for the algorithm while also solving the given problem using the learned knowledge. Finally, we empirically evaluate our approach in DCOP, F-DCOP, and MIF-DCOP settings and show that DPSA produces solutions of significantly better quality than the state-of-the-art non-exact algorithms in their corresponding settings.

Citations (7)

Summary

We haven't generated a summary for this paper yet.