Papers
Topics
Authors
Recent
2000 character limit reached

Learning Optimal Temperature Region for Solving Mixed Integer Functional DCOPs

Published 27 Feb 2020 in cs.MA and cs.AI | (2002.12001v2)

Abstract: Distributed Constraint Optimization Problems (DCOPs) are an important framework for modeling coordinated decision-making problems in multi-agent systems with a set of discrete variables. Later works have extended DCOPs to model problems with a set of continuous variables, named Functional DCOPs (F-DCOPs). In this paper, we combine both of these frameworks into the Mixed Integer Functional DCOP (MIF-DCOP) framework that can deal with problems regardless of their variables' type. We then propose a novel algorithm $-$ Distributed Parallel Simulated Annealing (DPSA), where agents cooperatively learn the optimal parameter configuration for the algorithm while also solving the given problem using the learned knowledge. Finally, we empirically evaluate our approach in DCOP, F-DCOP, and MIF-DCOP settings and show that DPSA produces solutions of significantly better quality than the state-of-the-art non-exact algorithms in their corresponding settings.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.