Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmentation of carotid vessel wall using U-Net and segmentation average network (2002.11467v1)

Published 26 Feb 2020 in eess.IV

Abstract: Segmentation of carotid vessel wall is required in vessel wall volume (VWV) and local vessel-wall-plus-plaque thickness (VWT) quantification of the carotid artery. Manual segmentation of the vessel wall is time-consuming and prone to interobserver variability. In this paper, we proposed a convolution neural network to segment the common carotid artery (CCA) from 3D carotid ultrasound images. The proposed CNN involves three U-Nets that segmented the 3D ultrasound (3DUS) images in the axial, lateral and frontal orientations. The segmentation maps generated by three U-Nets were consolidated by a novel segmentation average network (SAN) we proposed in this paper. The experimental results show that the proposed CNN improved the Dice similarity coefficient (DSC) for vessel wall segmentation from 64.8% to 67.5%, the sensitivity from 63.8% to 70.5%, and the area under receiver operator characteristic curve (AUC) from 0.89 to 0.94.

Citations (1)

Summary

We haven't generated a summary for this paper yet.