Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

See, Attend and Brake: An Attention-based Saliency Map Prediction Model for End-to-End Driving (2002.11020v1)

Published 24 Feb 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Visual perception is the most critical input for driving decisions. In this study, our aim is to understand relationship between saliency and driving decisions. We present a novel attention-based saliency map prediction model for making braking decisions This approach constructs a holistic model to the driving task and can be extended for other driving decisions like steering and acceleration. The proposed model is a deep neural network model that feeds extracted features from input image to a recurrent neural network with an attention mechanism. Then predicted saliency map is used to make braking decision. We trained and evaluated using driving attention dataset BDD-A, and saliency dataset CAT2000.

Citations (13)

Summary

We haven't generated a summary for this paper yet.