Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bigness of the tangent bundle of del Pezzo surfaces and $D$-simplicity (2002.11010v2)

Published 25 Feb 2020 in math.AG and math.AC

Abstract: We consider the question of simplicity of a ring $R$ under the action of its ring of differential operators $D_R$. We give examples to show that even when $R$ is Gorenstein and has rational singularities $R$ need not be a simple $D_R$-module; for example, this is the case when $R$ is the homogeneous coordinate ring of a smooth cubic surface. Our examples are homogeneous coordinate rings of smooth Fano varieties, and our proof proceeds by showing that the tangent bundle of such a variety need not be big. We also give a partial converse showing that when $R$ is the homogeneous coordinate ring of a smooth projective variety $X$, embedded by some multiple of its canonical divisor, then simplicity of $R$ as a $D_R$-module implies that $X$ is Fano and thus $R$ has rational singularities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.