Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Determinantal point processes and fermion quasifree states (2002.10723v2)

Published 25 Feb 2020 in math.PR

Abstract: Determinantal point processes are characterized by a special structural property of the correlation functions: they are given by minors of a correlation kernel. However, unlike the correlation functions themselves, this kernel is not defined intrinsically, and the same determinantal process can be generated by many different kernels. The non-uniqueness of a correlation kernel causes difficulties in studying determinantal processes. We propose a formalism which allows to find a distinguished correlation kernel under certain additional assumptions. The idea is to exploit a connection between determinantal processes and quasifree states on CAR, the algebra of canonical anticommutation relations. We prove that the formalism applies to discrete N-point orthogonal polynomial ensembles and to some of their large-N limits including the discrete sine process and the determinantal processes with the discrete Hermite, Laguerre, and Jacobi kernels investigated by Alexei Borodin and the author in [Commun. Math. Phys. 353 (2017), 853-903; arXiv:1608.01564]. As an application we resolve the equivalence/disjointness dichotomy for some of those processes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.