Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Statistical Adaptive Stochastic Gradient Methods (2002.10597v1)

Published 25 Feb 2020 in stat.ML and cs.LG

Abstract: We propose a statistical adaptive procedure called SALSA for automatically scheduling the learning rate (step size) in stochastic gradient methods. SALSA first uses a smoothed stochastic line-search procedure to gradually increase the learning rate, then automatically switches to a statistical method to decrease the learning rate. The line search procedure ``warms up'' the optimization process, reducing the need for expensive trial and error in setting an initial learning rate. The method for decreasing the learning rate is based on a new statistical test for detecting stationarity when using a constant step size. Unlike in prior work, our test applies to a broad class of stochastic gradient algorithms without modification. The combined method is highly robust and autonomous, and it matches the performance of the best hand-tuned learning rate schedules in our experiments on several deep learning tasks.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com