2000 character limit reached
Parabolic category $\mathcal O^{\mathfrak p}$ for periplectic Lie superalgebras $\mathfrak{pe}(n)$ (2002.10311v2)
Published 24 Feb 2020 in math.RT
Abstract: We provide a linkage principle in an arbitrary parabolic category $\mathcal O{\mathfrak p}$ for the periplectic Lie superalgebras $\mathfrak{pe}(n)$. As an application, we classify indecomposable blocks in $\mathcal O{\mathfrak p}$. We classify indecomposable tilting modules in $\mathcal O{\mathfrak p}$ whose characters are controlled by the Kazhdan-Lusztig polynomials of type $\bf A$ Lie algebras. We establish the complete list of characters of indecomposable tilting modules in $\mathcal O{\mathfrak p}$ for $\mathfrak{pe}(3)$.