Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting EXTRA for Smooth Distributed Optimization

Published 24 Feb 2020 in math.NA, cs.LG, cs.NA, and math.OC | (2002.10110v2)

Abstract: EXTRA is a popular method for dencentralized distributed optimization and has broad applications. This paper revisits EXTRA. First, we give a sharp complexity analysis for EXTRA with the improved $O\left(\left(\frac{L}{\mu}+\frac{1}{1-\sigma_2(W)}\right)\log\frac{1}{\epsilon(1-\sigma_2(W))}\right)$ communication and computation complexities for $\mu$-strongly convex and $L$-smooth problems, where $\sigma_2(W)$ is the second largest singular value of the weight matrix $W$. When the strong convexity is absent, we prove the $O\left(\left(\frac{L}{\epsilon}+\frac{1}{1-\sigma_2(W)}\right)\log\frac{1}{1-\sigma_2(W)}\right)$ complexities. Then, we use the Catalyst framework to accelerate EXTRA and obtain the $O\left(\sqrt{\frac{L}{\mu(1-\sigma_2(W))}}\log\frac{ L}{\mu(1-\sigma_2(W))}\log\frac{1}{\epsilon}\right)$ communication and computation complexities for strongly convex and smooth problems and the $O\left(\sqrt{\frac{L}{\epsilon(1-\sigma_2(W))}}\log\frac{1}{\epsilon(1-\sigma_2(W))}\right)$ complexities for non-strongly convex ones. Our communication complexities of the accelerated EXTRA are only worse by the factors of $\left(\log\frac{L}{\mu(1-\sigma_2(W))}\right)$ and $\left(\log\frac{1}{\epsilon(1-\sigma_2(W))}\right)$ from the lower complexity bounds for strongly convex and non-strongly convex problems, respectively.

Citations (39)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.