Schauder's estimates for nonlocal equations with singular Lévy measures (2002.09887v1)
Abstract: In this paper, we establish Schauder's estimates for the following non-local equations in \mRd : $$ \partial_tu=\mathscr L{(\alpha)}_{\kappa,\sigma} u+b\cdot\nabla u+f,\ u(0)=0, $$ where $\alpha\in(1/2,2)$ and $ b:\mathbb R_+\times\mathbb Rd\to\mathbb R$ is an unbounded local $\beta$-order H\"older function in $ x $ uniformly in $ t $, and $\mathscr L{(\alpha)}_{\kappa,\sigma}$ is a non-local $\alpha$-stable-like operator with form: \begin{align*} {\mathscr L}{(\alpha)}{\kappa,\sigma}u(t,x):=\int{\mathbb Rd}\Big(u(t,x+\sigma(t,x)z)-u(t,x)-\sigma(t,x)z{(\alpha)}\cdot\nabla u(t,x)\Big)\kappa(t,x,z)\nu{(\alpha)}(\mathord{{\rm d}} z), \end{align*} where $z{(\alpha)}=z\mathbf{1}{\alpha\in(1,2)}+z\mathbf{1}{|z|\leq 1}\mathbf{1}{\alpha=1}$, $ \kappa:\mathbb R+\times\mathbb R{2d}\to\mathbb R_+ $ is bounded from above and below, $ \sigma:\mathbb R_+\times\mathbb R{d}\to \mathbb Rd\otimes \mathbb Rd$ is a $ \gamma $-order H\"older continuous function in $ x $ uniformly in $ t $, and $ \nu{(\alpha)} $ is a singular non-degenerate $ \alpha $-stable L\'evy measure.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.