Feedback for nonlinear system identification
Abstract: Motivated by neuronal models from neuroscience, we consider the system identification of simple feedback structures whose behaviors include nonlinear phenomena such as excitability, limit-cycles and chaos. We show that output feedback is sufficient to solve the identification problem in a two-step procedure. First, the nonlinear static characteristic of the system is extracted, and second, using a feedback linearizing law, a mildly nonlinear system with an approximately-finite memory is identified. In an ideal setting, the second step boils down to the identification of a LTI system. To illustrate the method in a realistic setting, we present numerical simulations of the identification of two classical systems that fit the assumed model structure.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.