Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning

Published 20 Feb 2020 in cs.LG, cs.SY, eess.SY, and stat.ML | (2002.08860v3)

Abstract: In this work, we introduce Dissipative SymODEN, a deep learning architecture which can infer the dynamics of a physical system with dissipation from observed state trajectories. To improve prediction accuracy while reducing network size, Dissipative SymODEN encodes the port-Hamiltonian dynamics with energy dissipation and external input into the design of its computation graph and learns the dynamics in a structured way. The learned model, by revealing key aspects of the system, such as the inertia, dissipation, and potential energy, paves the way for energy-based controllers.

Citations (74)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.