Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

AutoAlpha: an Efficient Hierarchical Evolutionary Algorithm for Mining Alpha Factors in Quantitative Investment (2002.08245v2)

Published 9 Feb 2020 in q-fin.CP

Abstract: The multi-factor model is a widely used model in quantitative investment. The success of a multi-factor model is largely determined by the effectiveness of the alpha factors used in the model. This paper proposes a new evolutionary algorithm called AutoAlpha to automatically generate effective formulaic alphas from massive stock datasets. Specifically, first we discover an inherent pattern of the formulaic alphas and propose a hierarchical structure to quickly locate the promising part of space for search. Then we propose a new Quality Diversity search based on the Principal Component Analysis (PCA-QD) to guide the search away from the well-explored space for more desirable results. Next, we utilize the warm start method and the replacement method to prevent the premature convergence problem. Based on the formulaic alphas we discover, we propose an ensemble learning-to-rank model for generating the portfolio. The backtests in the Chinese stock market and the comparisons with several baselines further demonstrate the effectiveness of AutoAlpha in mining formulaic alphas for quantitative trading.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.