Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Winding Numbers and Generalized Mobility Edges in Non-Hermitian Systems (2002.08222v3)

Published 19 Feb 2020 in cond-mat.mes-hall

Abstract: The Aubry-Andr\'e-Harper (AAH) model with a self-dual symmetry plays an important role in studying the Anderson localization. Here we find a self-dual symmetry determining the quantum phase transition between extended and localized states in a non-Hermitian AAH model and show that the eigenenergies of these states are characterized by two types of winding numbers. By constructing and studying a non-Hermitian generalized AAH model, we further generalize the notion of the mobility edge, which separates the localized and extended states in the energy spectrum of disordered systems, to the non-Hermitian case and find that the generalized mobility edge is of a topological nature even in the open boundary geometry in the sense that the energies of localized and extended states exhibit distinct topological structures in the complex energy plane. Finally, we propose an experimental scheme to realize these models with electric circuits.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.