Rnn-transducer with language bias for end-to-end Mandarin-English code-switching speech recognition
Abstract: Recently, language identity information has been utilized to improve the performance of end-to-end code-switching (CS) speech recognition. However, previous works use an additional language identification (LID) model as an auxiliary module, which causes the system complex. In this work, we propose an improved recurrent neural network transducer (RNN-T) model with language bias to alleviate the problem. We use the language identities to bias the model to predict the CS points. This promotes the model to learn the language identity information directly from transcription, and no additional LID model is needed. We evaluate the approach on a Mandarin-English CS corpus SEAME. Compared to our RNN-T baseline, the proposed method can achieve 16.2% and 12.9% relative error reduction on two test sets, respectively.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.