Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Adaptive Newton Methods with Global Superlinear Convergence

Published 18 Feb 2020 in math.OC, cs.DC, cs.MA, cs.SY, eess.SP, and eess.SY | (2002.07378v3)

Abstract: This paper considers the distributed optimization problem where each node of a peer-to-peer network minimizes a finite sum of objective functions by communicating with its neighboring nodes. In sharp contrast to the existing literature where the fastest distributed algorithms converge either with a global linear or a local superlinear rate, we propose a distributed adaptive Newton (DAN) algorithm with a global quadratic convergence rate. Our key idea lies in the design of a finite-time set-consensus method with Polyak's adaptive stepsize. Moreover, we introduce a low-rank matrix approximation (LA) technique to compress the innovation of Hessian matrix so that each node only needs to transmit message of dimension $\mathcal{O}(p)$ (where $p$ is the dimension of decision vectors) per iteration, which is essentially the same as that of first-order methods. Nevertheless, the resulting DAN-LA converges to an optimal solution with a global superlinear rate. Numerical experiments on logistic regression problems are conducted to validate their advantages over existing methods.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.