Papers
Topics
Authors
Recent
Search
2000 character limit reached

High spatially sensitive quantitative phase imaging assisted with deep neural network for classification of human spermatozoa under stressed condition

Published 18 Feb 2020 in physics.bio-ph, eess.IV, and q-bio.QM | (2002.07377v1)

Abstract: Sperm cell motility and morphology observed under the bright field microscopy are the only criteria for selecting particular sperm cell during Intracytoplasmic Sperm Injection (ICSI) procedure of Assisted Reproductive Technology (ART). Several factors such as, oxidative stress, cryopreservation, heat, smoking and alcohol consumption, are negatively associated with the quality of sperm cell and fertilization potential due to the changing of sub-cellular structures and functions which are overlooked. A bright field imaging contrast is insufficient to distinguish tiniest morphological cell features that might influence the fertilizing ability of sperm cell. We developed a partially spatially coherent digital holographic microscope (PSC-DHM) for quantitative phase imaging (QPI) in order to distinguish normal sperm cells from sperm cells under different stress conditions such as cryopreservation, exposure to hydrogen peroxide and ethanol without any labeling. Phase maps of 10,163 sperm cells (2,400 control cells, 2,750 spermatozoa after cryopreservation, 2,515 and 2,498 cells under hydrogen peroxide and ethanol respectively) are reconstructed using the data acquired from PSC-DHM system. Total of seven feedforward deep neural networks (DNN) were employed for the classification of the phase maps for normal and stress affected sperm cells. When validated against the test dataset, the DNN provided an average sensitivity, specificity and accuracy of 84.88%, 95.03% and 85%, respectively. The current approach DNN and QPI techniques of quantitative information can be applied for further improving ICSI procedure and the diagnostic efficiency for the classification of semen quality in regards to their fertilization potential and other biomedical applications in general.

Citations (39)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.