Papers
Topics
Authors
Recent
2000 character limit reached

A Fast Counting Method for 6-motifs with Low Connectivity

Published 17 Feb 2020 in cs.SI and cs.DS | (2002.06957v1)

Abstract: A $k$-motif (or graphlet) is a subgraph on $k$ nodes in a graph or network. Counting of motifs in complex networks has been a well-studied problem in network analysis of various real-word graphs arising from the study of social networks and bioinformatics. In particular, the triangle counting problem has received much attention due to its significance in understanding the behavior of social networks. Similarly, subgraphs with more than 3 nodes have received much attention recently. While there have been successful methods developed on this problem, most of the existing algorithms are not scalable to large networks with millions of nodes and edges. The main contribution of this paper is a preliminary study that genaralizes the exact counting algorithm provided by Pinar, Seshadhri and Vishal to a collection of 6-motifs. This method uses the counts of motifs with smaller size to obtain the counts of 6-motifs with low connecivity, that is, containing a cut-vertex or a cut-edge. Therefore, it circumvents the combinatorial explosion that naturally arises when counting subgraphs in large networks.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.