Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HybridCite: A Hybrid Model for Context-Aware Citation Recommendation (2002.06406v2)

Published 15 Feb 2020 in cs.IR, cs.DL, and cs.LG

Abstract: Citation recommendation systems aim to recommend citations for either a complete paper or a small portion of text called a citation context. The process of recommending citations for citation contexts is called local citation recommendation and is the focus of this paper. Firstly, we develop citation recommendation approaches based on embeddings, topic modeling, and information retrieval techniques. We combine, for the first time to the best of our knowledge, the best-performing algorithms into a semi-genetic hybrid recommender system for citation recommendation. We evaluate the single approaches and the hybrid approach offline based on several data sets, such as the Microsoft Academic Graph (MAG) and the MAG in combination with arXiv and ACL. We further conduct a user study for evaluating our approaches online. Our evaluation results show that a hybrid model containing embedding and information retrieval-based components outperforms its individual components and further algorithms by a large margin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Michael Färber (65 papers)
  2. Ashwath Sampath (1 paper)
Citations (28)

Summary

We haven't generated a summary for this paper yet.