Asymptotics of Fredholm determinant associated with the Pearcey kernel (2002.06370v2)
Abstract: The Pearcey kernel is a classical and universal kernel arising from random matrix theory, which describes the local statistics of eigenvalues when the limiting mean eigenvalue density exhibits a cusp-like singularity. It appears in a variety of statistical physics models beyond matrix models as well. We consider the Fredholm determinant of a trace class operator acting on $L2\left(-s, s\right)$ with the Pearcey kernel. Based on a steepest descent analysis for a $3\times 3$ matrix-valued Riemann-Hilbert problem, we obtain asymptotics of the Fredholm determinant as $s\to +\infty$, which is also interpreted as large gap asymptotics in the context of random matrix theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.