2000 character limit reached
Higher order co-occurrence tensors for hypergraphs via face-splitting (2002.06285v1)
Published 15 Feb 2020 in stat.ML and cs.LG
Abstract: A popular trick for computing a pairwise co-occurrence matrix is the product of an incidence matrix and its transpose. We present an analog for higher order tuple co-occurrences using the face-splitting product, or alternately known as the transpose Khatri-Rao product. These higher order co-occurrences encode the commonality of tokens in the company of other tokens, and thus generalize the mutual information commonly studied. We demonstrate this tensor's use via a popular NLP model, and hypergraph models of similarity.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.