Papers
Topics
Authors
Recent
2000 character limit reached

On State Variables, Bandit Problems and POMDPs (2002.06238v1)

Published 14 Feb 2020 in cs.LG, cs.AI, and stat.ML

Abstract: State variables are easily the most subtle dimension of sequential decision problems. This is especially true in the context of active learning problems (bandit problems") where decisions affect what we observe and learn. We describe our canonical framework that models {\it any} sequential decision problem, and present our definition of state variables that allows us to claim: Any properly modeled sequential decision problem is Markovian. We then present a novel two-agent perspective of partially observable Markov decision problems (POMDPs) that allows us to then claim: Any model of a real decision problem is (possibly) non-Markovian. We illustrate these perspectives using the context of observing and treating flu in a population, and provide examples of all four classes of policies in this setting. We close with an indication of how to extend this thinking to multiagent problems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.