Picard groupoids and $Γ$-categories (2002.05811v2)
Abstract: In this paper we construct a symmetric monoidal closed model category of coherently commutative Picard groupoids. We construct another model category structure on the category of (small) permutative categories whose fibrant objects are (permutative) Picard groupoids. The main result is that the Segal's nerve functor induces a Quillen equivalence between the two aforementioned model categories. Our main result implies the classical result that Picard groupoids model stable homotopy one-types.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.