Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Generalization of Reinforcement Learning with Minimax Distributional Soft Actor-Critic (2002.05502v2)

Published 13 Feb 2020 in cs.LG and stat.ML

Abstract: Reinforcement learning (RL) has achieved remarkable performance in numerous sequential decision making and control tasks. However, a common problem is that learned nearly optimal policy always overfits to the training environment and may not be extended to situations never encountered during training. For practical applications, the randomness of environment usually leads to some devastating events, which should be the focus of safety-critical systems such as autonomous driving. In this paper, we introduce the minimax formulation and distributional framework to improve the generalization ability of RL algorithms and develop the Minimax Distributional Soft Actor-Critic (Minimax DSAC) algorithm. Minimax formulation aims to seek optimal policy considering the most severe variations from environment, in which the protagonist policy maximizes action-value function while the adversary policy tries to minimize it. Distributional framework aims to learn a state-action return distribution, from which we can model the risk of different returns explicitly, thereby formulating a risk-averse protagonist policy and a risk-seeking adversarial policy. We implement our method on the decision-making tasks of autonomous vehicles at intersections and test the trained policy in distinct environments. Results demonstrate that our method can greatly improve the generalization ability of the protagonist agent to different environmental variations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yangang Ren (13 papers)
  2. Jingliang Duan (42 papers)
  3. Shengbo Eben Li (98 papers)
  4. Yang Guan (22 papers)
  5. Qi Sun (114 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.