Papers
Topics
Authors
Recent
Search
2000 character limit reached

HRINet: Alternative Supervision Network for High-resolution CT image Interpolation

Published 11 Feb 2020 in eess.IV and cs.CV | (2002.04455v2)

Abstract: Image interpolation in medical area is of high importance as most 3D biomedical volume images are sampled where the distance between consecutive slices significantly greater than the in-plane pixel size due to radiation dose or scanning time. Image interpolation creates a number of new slices between known slices in order to obtain an isotropic volume image. The results can be used for the higher quality of 3D reconstruction and visualization of human body structures. Semantic interpolation on the manifold has been proved to be very useful for smoothing image interpolation. Nevertheless, all previous methods focused on low-resolution image interpolation, and most of them work poorly on high-resolution image. We propose a novel network, High Resolution Interpolation Network (HRINet), aiming at producing high-resolution CT image interpolations. We combine the idea of ACAI and GANs, and propose a novel idea of alternative supervision method by applying supervised and unsupervised training alternatively to raise the accuracy of human organ structures in CT while keeping high quality. We compare an MSE based and a perceptual based loss optimizing methods for high quality interpolation, and show the tradeoff between the structural correctness and sharpness. Our experiments show the great improvement on 256 2 and 5122 images quantitatively and qualitatively.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.