Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Matrix Multiplication: The Sparse Power-of-2 Factorization (2002.04002v2)

Published 10 Feb 2020 in cs.IT, cs.DS, and math.IT

Abstract: We present an algorithm to reduce the computational effort for the multiplication of a given matrix with an unknown column vector. The algorithm decomposes the given matrix into a product of matrices whose entries are either zero or integer powers of two utilizing the principles of sparse recovery. While classical low resolution quantization achieves an accuracy of 6 dB per bit, our method can achieve many times more than that for large matrices. Numerical evidence suggests that the improvement actually grows unboundedly with matrix size. Due to sparsity, the algorithm even allows for quantization levels below 1 bit per matrix entry while achieving highly accurate approximations for large matrices. Applications include, but are not limited to, neural networks, as well as fully digital beam-forming for massive MIMO and millimeter wave applications.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.