Papers
Topics
Authors
Recent
Search
2000 character limit reached

CONVINCE: Collaborative Cross-Camera Video Analytics at the Edge

Published 5 Feb 2020 in cs.CV, cs.LG, and cs.NI | (2002.03797v1)

Abstract: Today, video cameras are deployed in dense for monitoring physical places e.g., city, industrial, or agricultural sites. In the current systems, each camera node sends its feed to a cloud server individually. However, this approach suffers from several hurdles including higher computation cost, large bandwidth requirement for analyzing the enormous data, and privacy concerns. In dense deployment, video nodes typically demonstrate a significant spatio-temporal correlation. To overcome these obstacles in current approaches, this paper introduces CONVINCE, a new approach to look at the network cameras as a collective entity that enables collaborative video analytics pipeline among cameras. CONVINCE aims at 1) reducing the computation cost and bandwidth requirements by leveraging spatio-temporal correlations among cameras in eliminating redundant frames intelligently, and ii) improving vision algorithms' accuracy by enabling collaborative knowledge sharing among relevant cameras. Our results demonstrate that CONVINCE achieves an object identification accuracy of $\sim$91\%, by transmitting only about $\sim$25\% of all the recorded frames.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.