Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Predicting star formation properties of galaxies using deep learning (2002.03578v1)

Published 10 Feb 2020 in astro-ph.GA and cs.LG

Abstract: Understanding the star-formation properties of galaxies as a function of cosmic epoch is a critical exercise in studies of galaxy evolution. Traditionally, stellar population synthesis models have been used to obtain best fit parameters that characterise star formation in galaxies. As multiband flux measurements become available for thousands of galaxies, an alternative approach to characterising star formation using machine learning becomes feasible. In this work, we present the use of deep learning techniques to predict three important star formation properties -- stellar mass, star formation rate and dust luminosity. We characterise the performance of our deep learning models through comparisons with outputs from a standard stellar population synthesis code.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.