Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Complexity of Constructive Control under Nearly Single-Peaked Preferences

Published 10 Feb 2020 in cs.GT | (2002.03539v1)

Abstract: We investigate the complexity of {\sc{Constructive Control by Adding/Deleting Votes}} (CCAV/CCDV) for $r$-approval, Condorcet, Maximin and Copeland${\alpha}$ in $k$-axes and $k$-candidates partition single-peaked elections. In general, we prove that CCAV and CCDV for most of the voting correspondences mentioned above are NP-hard even when~$k$ is a very small constant. Exceptions are CCAV and CCDV for Condorcet and CCAV for $r$-approval in $k$-axes single-peaked elections, which we show to be fixed-parameter tractable with respect to~$k$. In addition, we give a polynomial-time algorithm for recognizing $2$-axes elections, resolving an open problem. Our work leads to a number of dichotomy results. To establish an NP-hardness result, we also study a property of $3$-regular bipartite graphs which may be of independent interest. In particular, we prove that for every $3$-regular bipartite graph, there are two linear orders of its vertices such that the two endpoints of every edge are consecutive in at least one of the two orders.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.