Papers
Topics
Authors
Recent
2000 character limit reached

State-Dependent Autoregressive Models: Properties, Estimation and Forecasting

Published 8 Feb 2020 in math.ST and stat.TH | (2002.03134v1)

Abstract: This paper studies some temporal dependence properties and addresses the issue of parametric estimation for a class of state-dependent autoregressive models for nonlinear time series in which we assume a stochastic autoregressive coefficient depending on the first lagged value of the process itself. We call such a model state-dependent first-order autoregressive process, (SDAR). We introduce some assumptions under which this class of models is strictly stationary and uniformly ergodic and we establish consistency and asymptotic normality of the quasi-maximum likelihood estimator of the parameters. In order to capture the potentiality of the model, we present an empirical application to nonlinear time series provided by the weekly realized volatility extracted from returns of some European financial indices. The comparison of forecasting accuracy is made considering an alternative approach provided by a two-regime SETAR model

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.