Papers
Topics
Authors
Recent
2000 character limit reached

Iterative Label Improvement: Robust Training by Confidence Based Filtering and Dataset Partitioning

Published 7 Feb 2020 in cs.LG, cs.CV, and stat.ML | (2002.02705v3)

Abstract: State-of-the-art, high capacity deep neural networks not only require large amounts of labelled training data, they are also highly susceptible to label errors in this data, typically resulting in large efforts and costs and therefore limiting the applicability of deep learning. To alleviate this issue, we propose a novel meta training and labelling scheme that is able to use inexpensive unlabelled data by taking advantage of the generalization power of deep neural networks. We show experimentally that by solely relying on one network architecture and our proposed scheme of iterative training and prediction steps, both label quality and resulting model accuracy can be improved significantly. Our method achieves state-of-the-art results, while being architecture agnostic and therefore broadly applicable. Compared to other methods dealing with erroneous labels, our approach does neither require another network to be trained, nor does it necessarily need an additional, highly accurate reference label set. Instead of removing samples from a labelled set, our technique uses additional sensor data without the need for manual labelling. Furthermore, our approach can be used for semi-supervised learning.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.