Papers
Topics
Authors
Recent
2000 character limit reached

Statistical Outlier Identification in Multi-robot Visual SLAM using Expectation Maximization

Published 7 Feb 2020 in cs.CV | (2002.02638v1)

Abstract: This paper introduces a novel and distributed method for detecting inter-map loop closure outliers in simultaneous localization and mapping (SLAM). The proposed algorithm does not rely on a good initialization and can handle more than two maps at a time. In multi-robot SLAM applications, maps made by different agents have nonidentical spatial frames of reference which makes initialization very difficult in the presence of outliers. This paper presents a probabilistic approach for detecting incorrect orientation measurements prior to pose graph optimization by checking the geometric consistency of rotation measurements. Expectation-Maximization is used to fine-tune the model parameters. As ancillary contributions, a new approximate discrete inference procedure is presented which uses evidence on loops in a graph and is based on optimization (Alternate Direction Method of Multipliers). This method yields superior results compared to Belief Propagation and has convergence guarantees. Simulation and experimental results are presented that evaluate the performance of the outlier detection method and the inference algorithm on synthetic and real-world data.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.