Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging Ordinary-Label Learning and Complementary-Label Learning (2002.02158v5)

Published 6 Feb 2020 in cs.LG and stat.ML

Abstract: A supervised learning framework has been proposed for the situation where each training data is provided with a complementary label that represents a class to which the pattern does not belong. In the existing literature, complementary-label learning has been studied independently from ordinary-label learning, which assumes that each training data is provided with a label representing the class to which the pattern belongs. However, providing a complementary label should be treated as equivalent to providing the rest of all the labels as the candidates of the one true class. In this paper, we focus on the fact that the loss functions for one-versus-all and pairwise classification corresponding to ordinary-label learning and complementary-label learning satisfy certain additivity and duality, and provide a framework which directly bridge those existing supervised learning frameworks. Further, we derive classification risk and error bound for any loss functions which satisfy additivity and duality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yasuhiro Katsura (1 paper)
  2. Masato Uchida (4 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.