Papers
Topics
Authors
Recent
Search
2000 character limit reached

On hereditarily self-similar $p$-adic analytic pro-$p$ groups

Published 6 Feb 2020 in math.GR and math.NT | (2002.02053v1)

Abstract: A non-trivial finitely generated pro-$p$ group $G$ is said to be strongly hereditarily self-similar of index $p$ if every non-trivial finitely generated closed subgroup of $G$ admits a faithful self-similar action on a $p$-ary tree. We classify the solvable torsion-free $p$-adic analytic pro-$p$ groups of dimension less than $p$ that are strongly hereditarily self-similar of index $p$. Moreover, we show that a solvable torsion-free $p$-adic analytic pro-$p$ group of dimension less than $p$ is strongly hereditarily self-similar of index $p$ if and only if it is isomorphic to the maximal pro-$p$ Galois group of some field that contains a primitive $p$-th root of unity. As a key step for the proof of the above results, we classify the 3-dimensional solvable torsion-free $p$-adic analytic pro-$p$ groups that admit a faithful self-similar action on a $p$-ary tree, completing the classification of the 3-dimensional torsion-free $p$-adic analytic pro-$p$ groups that admit such actions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.