Papers
Topics
Authors
Recent
2000 character limit reached

Dropout Prediction over Weeks in MOOCs by Learning Representations of Clicks and Videos

Published 5 Feb 2020 in cs.LG and cs.CY | (2002.01955v1)

Abstract: This paper addresses a key challenge in MOOC dropout prediction, namely to build meaningful representations from clickstream data. While a variety of feature extraction techniques have been explored extensively for such purposes, to our knowledge, no prior works have explored modeling of educational content (e.g. video) and their correlation with the learner's behavior (e.g. clickstream) in this context. We bridge this gap by devising a method to learn representation for videos and the correlation between videos and clicks. The results indicate that modeling videos and their correlation with clicks bring statistically significant improvements in predicting dropout.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.