A^1-Euler classes: six functors formalisms, dualities, integrality and linear subspaces of complete intersections (2002.01848v2)
Abstract: We equate various Euler classes of algebraic vector bundles, including those of [BM, KW, DJK], and one suggested by M.J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler class, and give formulas for local indices at isolated zeros, both in terms of 6-functor formalism of coherent sheaves and as an explicit recipe in commutative algebra of Scheja and Storch. As an application, we compute the Euler classes associated to arithmetic counts of d-planes on complete intersections in Pn in terms of topological Euler numbers over R and C.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.