Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Geosocial Location Classification: Associating Type to Places Based on Geotagged Social-Media Posts (2002.01846v2)

Published 5 Feb 2020 in cs.CL, cs.IR, and cs.SI

Abstract: Associating type to locations can be used to enrich maps and can serve a plethora of geospatial applications. An automatic method to do so could make the process less expensive in terms of human labor, and faster to react to changes. In this paper we study the problem of Geosocial Location Classification, where the type of a site, e.g., a building, is discovered based on social-media posts. Our goal is to correctly associate a set of messages posted in a small radius around a given location with the corresponding location type, e.g., school, church, restaurant or museum. We explore two approaches to the problem: (a) a pipeline approach, where each message is first classified, and then the location associated with the message set is inferred from the individual message labels; and (b) a joint approach where the individual messages are simultaneously processed to yield the desired location type. We tested the two approaches over a dataset of geotagged tweets. Our results demonstrate the superiority of the joint approach. Moreover, we show that due to the unique structure of the problem, where weakly-related messages are jointly processed to yield a single final label, linear classifiers outperform deep neural network alternatives.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.