Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial and spectral deep attention fusion for multi-channel speech separation using deep embedding features (2002.01626v1)

Published 5 Feb 2020 in eess.AS, cs.LG, and cs.SD

Abstract: Multi-channel deep clustering (MDC) has acquired a good performance for speech separation. However, MDC only applies the spatial features as the additional information. So it is difficult to learn mutual relationship between spatial and spectral features. Besides, the training objective of MDC is defined at embedding vectors, rather than real separated sources, which may damage the separation performance. In this work, we propose a deep attention fusion method to dynamically control the weights of the spectral and spatial features and combine them deeply. In addition, to solve the training objective problem of MDC, the real separated sources are used as the training objectives. Specifically, we apply the deep clustering network to extract deep embedding features. Instead of using the unsupervised K-means clustering to estimate binary masks, another supervised network is utilized to learn soft masks from these deep embedding features. Our experiments are conducted on a spatialized reverberant version of WSJ0-2mix dataset. Experimental results show that the proposed method outperforms MDC baseline and even better than the oracle ideal binary mask (IBM).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Cunhang Fan (35 papers)
  2. Bin Liu (441 papers)
  3. Jianhua Tao (139 papers)
  4. Jiangyan Yi (77 papers)
  5. Zhengqi Wen (69 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.