Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Networks in Healthcare: Distribution by Medical Condition (2002.00224v2)

Published 1 Feb 2020 in cs.CY and cs.AI

Abstract: Bayesian networks (BNs) have received increasing research attention that is not matched by adoption in practice and yet have potential to significantly benefit healthcare. Hitherto, research works have not investigated the types of medical conditions being modelled with BNs, nor whether any differences exist in how and why they are applied to different conditions. This research seeks to identify and quantify the range of medical conditions for which healthcare-related BN models have been proposed, and the differences in approach between the most common medical conditions to which they have been applied. We found that almost two-thirds of all healthcare BNs are focused on four conditions: cardiac, cancer, psychological and lung disorders. We believe that a lack of understanding regarding how BNs work and what they are capable of exists, and that it is only with greater understanding and promotion that we may ever realise the full potential of BNs to effect positive change in daily healthcare practice.

Citations (115)

Summary

We haven't generated a summary for this paper yet.