The maximum volume of hyperbolic polyhedra (2002.00174v2)
Abstract: We study the supremum of the volume of hyperbolic polyhedra with some fixed combinatorics and with vertices of any kind (real, ideal or hyperideal). We find that the supremum is always equal to the volume of the rectification of the 1-skeleton. The theorem is proved by applying a sort of volume-increasing flow to any hyperbolic polyhedron. Singularities may arise in the flow because some strata of the polyhedron may degenerate to lower-dimensional objects; when this occurs, we need to study carefully the combinatorics of the resulting polyhedron and continue with the flow, until eventually we get a rectified polyhedron.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.