Papers
Topics
Authors
Recent
Search
2000 character limit reached

Centralized and distributed online learning for sparse time-varying optimization

Published 31 Jan 2020 in math.OC and cs.LG | (2001.11939v1)

Abstract: The development of online algorithms to track time-varying systems has drawn a lot of attention in the last years, in particular in the framework of online convex optimization. Meanwhile, sparse time-varying optimization has emerged as a powerful tool to deal with widespread applications, ranging from dynamic compressed sensing to parsimonious system identification. In most of the literature on sparse time-varying problems, some prior information on the system's evolution is assumed to be available. In contrast, in this paper, we propose an online learning approach, which does not employ a given model and is suitable for adversarial frameworks. Specifically, we develop centralized and distributed algorithms, and we theoretically analyze them in terms of dynamic regret, in an online learning perspective. Further, we propose numerical experiments that illustrate their practical effectiveness.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.