2000 character limit reached
Quaternion-Valued Recurrent Projection Neural Networks on Unit Quaternions (2001.11846v1)
Published 30 Jan 2020 in cs.LG, cs.NE, and stat.ML
Abstract: Hypercomplex-valued neural networks, including quaternion-valued neural networks, can treat multi-dimensional data as a single entity. In this paper, we present the quaternion-valued recurrent projection neural networks (QRPNNs). Briefly, QRPNNs are obtained by combining the non-local projection learning with the quaternion-valued recurrent correlation neural network (QRCNNs). We show that QRPNNs overcome the cross-talk problem of QRCNNs. Thus, they are appropriate to implement associative memories. Furthermore, computational experiments reveal that QRPNNs exhibit greater storage capacity and noise tolerance than their corresponding QRCNNs.