Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Asymmetric extension of Pascal-Dellanoy triangles (2001.11665v1)

Published 31 Jan 2020 in math.CO and math.NT

Abstract: We give a generalization of the Pascal triangle called the quasi s-Pascal triangle where the sum of the elements crossing the diagonal rays produce the s-bonacci sequence. For this, consider a lattice path in the plane whose step set is {L = (1, 0), L1 = (1, 1), L2 = (2, 1), . . . , Ls = (s, 1)}; an explicit formula is given. Thereby linking the elements of the quasi s-Pascal triangle with the bisnomial coefficients. We establish the recurrence relation for the sum of elements lying over any finite ray of the quasi s-Pascal triangle. The generating function of the cited sums is produced. We also give identities among which one equivalent to the de Moivre sum and establish a q-analogue of the coefficient of the quasi s-Pascal triangle.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.