ANN-Based Detection in MIMO-OFDM Systems with Low-Resolution ADCs
Abstract: In this paper, we propose a multi-layer artificial neural network (ANN) that is trained with the Levenberg-Marquardt algorithm for use in signal detection over multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems, particularly those with low-resolution analog-to-digital converters (LR-ADCs). We consider a blind detection scheme where data symbol estimation is carried out without knowing the channel state information at the receiver (CSIR)---in contrast to classical algorithms. The main power of the proposed ANN-based detector (ANND) lies in its versatile use with any modulation scheme, blindly, yet without a change in its structure. We compare by simulations this new receiver with conventional ones, namely, the maximum likelihood (ML), minimum mean square error (MMSE), and zero-forcing (ZF), in terms of symbol error rate (SER) performance. Results suggest that ANND approaches ML at much lower complexity, outperforms ZF over the entire range of assessed signal-to-noise ratio (SNR) values, and so does it also, though, with the MMSE over different SNR ranges.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.