Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancement of Short Text Clustering by Iterative Classification (2001.11631v1)

Published 31 Jan 2020 in cs.IR, cs.CL, and cs.LG

Abstract: Short text clustering is a challenging task due to the lack of signal contained in such short texts. In this work, we propose iterative classification as a method to b o ost the clustering quality (e.g., accuracy) of short texts. Given a clustering of short texts obtained using an arbitrary clustering algorithm, iterative classification applies outlier removal to obtain outlier-free clusters. Then it trains a classification algorithm using the non-outliers based on their cluster distributions. Using the trained classification model, iterative classification reclassifies the outliers to obtain a new set of clusters. By repeating this several times, we obtain a much improved clustering of texts. Our experimental results show that the proposed clustering enhancement method not only improves the clustering quality of different clustering methods (e.g., k-means, k-means--, and hierarchical clustering) but also outperforms the state-of-the-art short text clustering methods on several short text datasets by a statistically significant margin.

Citations (39)

Summary

We haven't generated a summary for this paper yet.