Papers
Topics
Authors
Recent
2000 character limit reached

Guiding Cascading Failure Search with Interpretable Graph Convolutional Network

Published 30 Jan 2020 in eess.SP, cs.SY, and eess.SY | (2001.11553v1)

Abstract: Power system cascading failures become more time variant and complex because of the increasing network interconnection and higher renewable energy penetration. High computational cost is the main obstacle for a more frequent online cascading failure search, which is essential to improve system security. In this work, we show that the complex mechanism of cascading failures can be well captured by training a graph convolutional network (GCN) offline. Subsequently, the search of cascading failures can be significantly accelerated with the aid of the trained GCN model. We link the power network topology with the structure of the GCN, yielding a smaller parameter space to learn the complex mechanism. We further enable the interpretability of the GCN model by a layer-wise relevance propagation (LRP) algorithm. The proposed method is tested on both the IEEE RTS-79 test system and China's Henan Province power system. The results show that the GCN guided method can not only accelerate the search of cascading failures, but also reveal the reasons for predicting the potential cascading failures.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.