Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimized Feature Space Learning for Generating Efficient Binary Codes for Image Retrieval

Published 30 Jan 2020 in eess.IV and cs.LG | (2001.11400v1)

Abstract: In this paper we propose an approach for learning low dimensional optimized feature space with minimum intra-class variance and maximum inter-class variance. We address the problem of high-dimensionality of feature vectors extracted from neural networks by taking care of the global statistics of feature space. Classical approach of Linear Discriminant Analysis (LDA) is generally used for generating an optimized low dimensional feature space for single-labeled images. Since, image retrieval involves both multi-labeled and single-labeled images, we utilize the equivalence between LDA and Canonical Correlation Analysis (CCA) to generate an optimized feature space for single-labeled images and use CCA to generate an optimized feature space for multi-labeled images. Our approach correlates the projections of feature vectors with label vectors in our CCA based network architecture. The neural network minimize a loss function which maximizes the correlation coefficients. We binarize our generated feature vectors with the popular Iterative Quantization (ITQ) approach and also propose an ensemble network to generate binary codes of desired bit length for image retrieval. Our measurement of mean average precision shows competitive results on other state-of-the-art single-labeled and multi-labeled image retrieval datasets.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.