Papers
Topics
Authors
Recent
Search
2000 character limit reached

GradientDICE: Rethinking Generalized Offline Estimation of Stationary Values

Published 29 Jan 2020 in cs.LG and stat.ML | (2001.11113v7)

Abstract: We present GradientDICE for estimating the density ratio between the state distribution of the target policy and the sampling distribution in off-policy reinforcement learning. GradientDICE fixes several problems of GenDICE (Zhang et al., 2020), the state-of-the-art for estimating such density ratios. Namely, the optimization problem in GenDICE is not a convex-concave saddle-point problem once nonlinearity in optimization variable parameterization is introduced to ensure positivity, so any primal-dual algorithm is not guaranteed to converge or find the desired solution. However, such nonlinearity is essential to ensure the consistency of GenDICE even with a tabular representation. This is a fundamental contradiction, resulting from GenDICE's original formulation of the optimization problem. In GradientDICE, we optimize a different objective from GenDICE by using the Perron-Frobenius theorem and eliminating GenDICE's use of divergence. Consequently, nonlinearity in parameterization is not necessary for GradientDICE, which is provably convergent under linear function approximation.

Citations (95)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.