Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Medical image reconstruction with image-adaptive priors learned by use of generative adversarial networks (2001.10830v1)

Published 27 Jan 2020 in eess.IV, cs.LG, and stat.ML

Abstract: Medical image reconstruction is typically an ill-posed inverse problem. In order to address such ill-posed problems, the prior distribution of the sought after object property is usually incorporated by means of some sparsity-promoting regularization. Recently, prior distributions for images estimated using generative adversarial networks (GANs) have shown great promise in regularizing some of these image reconstruction problems. In this work, we apply an image-adaptive GAN-based reconstruction method (IAGAN) to reconstruct high fidelity images from incomplete medical imaging data. It is observed that the IAGAN method can potentially recover fine structures in the object that are relevant for medical diagnosis but may be oversmoothed in reconstructions with traditional sparsity-promoting regularization.

Citations (29)

Summary

We haven't generated a summary for this paper yet.