Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Kalibre: Knowledge-based Neural Surrogate Model Calibration for Data Center Digital Twins (2001.10681v3)

Published 29 Jan 2020 in eess.SY and cs.SY

Abstract: Computational fluid dynamics (CFD) model has been widely used for prototyping data centers. Evolving it to high-fidelity {\em digital twin} is desirable for the management and operations of large-scale data centers. Manually calibrating CFD model parameters to achieve twin-class fidelity by specially trained domain expert is tedious and labor-intensive. To reduce manual efforts, existing automatic calibration approaches developed for various computational models apply heuristics to search model configurations within an empirically defined parameter bound. However, in the context of CFD, each search step requires long-lasting CFD model's iterated solving, rendering these approaches impractical with increased model complexity. This paper presents Kalibre, a knowledge-based neural surrogate approach that performs CFD model calibration by iterating four key steps of i) training a neural surrogate model based on CFD-generated data, ii) finding the optimal parameters at the moment through neural surrogate retraining based on sensor-measured data, iii) configuring the found parameters back to the CFD model, and iv) validating the CFD model using sensor-measured data as the ground truth. Thus, the parameter search is offloaded to the neural surrogate which is ultra-faster than CFD model's iterated solving. To speed up the convergence of Kalibre, we integrate prior knowledge of the twinned data center's thermophysics into the neural surrogate design to improve its learning efficiency. With about five hours computation on a 32-core processor, Kalibre achieves mean absolute errors (MAEs) of $0.81o$C and $0.75o$C in calibrating two CFD models for two production data halls hosting thousands of servers each while requires fewer CFD solving processes than existing baseline approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.